The errors in calculating the pseudospectral differentiation matrices for C̆ebys̆ev-Gauss-Lobatto points
نویسندگان
چکیده
منابع مشابه
Tensor product Gauss-Lobatto points are Fekete points for the cube
Tensor products of Gauss-Lobatto quadrature points are frequently used as collocation points in spectral element methods. Unfortunately, it is not known if Gauss-Lobatto points exist in non-tensor-product domains like the simplex. In this work, we show that the n-dimensional tensor-product of Gauss-Lobatto quadrature points are also Fekete points. This suggests a way to generalize spectral meth...
متن کاملthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولGeneralized Gauss – Radau and Gauss – Lobatto Formulae ∗
Computational methods are developed for generating Gauss-type quadrature formulae having nodes of arbitrary multiplicity at one or both end points of the interval of integration. Positivity properties of the boundary weights are investigated numerically, and related conjectures are formulated. Applications are made to moment-preserving spline approximation. AMS subject classification: 65D30.
متن کاملcollocation errors in translations of the holy quran
the present study aims at identifying, classifying and analyzing collocation errors made by translators of the holy quran into english.findings indicated that collocationally the most acceptablt translation was done by ivring but the least appropriate one made by pickthall.
Short note on the mass matrix for Gauss-Lobatto grid points
The mass matrix for Gauss-Lobatto grid points is usually approximated by GaussLobatto quadrature because this leads to a diagonal matrix that is easy to invert. The exact mass matrix and its inverse are full. We show that the exact mass matrix and its inverse differ from the approximate diagonal ones by a simple rank-1 update (outer product). They can thus be applied to an arbitrary vector in O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1999
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(98)00240-5